Secondary structures of peptides and proteins via NMR chemical-shielding anisotropy (CSA) parameters.

نویسندگان

  • Eszter Czinki
  • Attila G Császár
  • Gábor Magyarfalvi
  • Peter R Schreiner
  • Wesley D Allen
چکیده

Complete nuclear magnetic resonance (NMR) chemical-shielding tensors, sigma, have been computed at different levels of density-functional theory (DFT), within the gauge-including atomic orbital (GIAO) formalism, for the atoms of the peptide model For-L-Ala-NH2 as a function of the backbone dihedral angles phi and psi by employing a dense grid of 10 degrees. A complete set of rigorously orthogonal symmetric tensor invariants, {sigma iso, rho, tau}, is introduced, where sigma iso is the usual isotropic chemical shielding, while the newly introduced rho and tau parameters describe the magnitude and the orientation/shape of the chemical-shielding anisotropy (CSA), respectively. The set {sigma iso, rho, tau} is unaffected by unitary transformations of the symmetric part of the shielding tensor. The mathematically and physically motivated {rho, tau} anisotropy pair is easily connected to more traditional shielding anisotropy measures, like span (Omega) and skew (kappa). The effectiveness of the different partitions of the CSA information in predicting conformations of peptides and proteins has been tested throughout the Ramachandran space by generating theoretical NMR anisotropy surfaces for our For-L-Ala-NH2 model. The CSA surfaces, including Omega(phi, psi), kappa(phi, psi), rho(phi, psi), and tau(phi, psi) are highly structured. Individually, none of these surfaces is able to distinguish unequivocally between the alpha-helix and beta-strand secondary structural types of proteins. However, two- and three-dimensional correlated plots, including Omega versus kappa, rho versus tau, and sigma iso versus rho versus tau, especially for 13Calpha, have considerable promise in distinguishing among all four of the major secondary structural elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-State NMR Determination of 13CR Chemical Shift Anisotropies for the Identification of Protein Secondary Structure

A solid-state nuclear magnetic resonance (NMR) method for the site-resolved identification of the secondary structure of solid peptides and proteins is presented. This technique exploits the correlation between the backbone conformation and the CR chemical shift anisotropies (CSA) of proteins. The 13CR CSAs are measured under fast magic-angle-spinning using a new sequence of sixteen 180° pulses...

متن کامل

The effects of F2 adsorption on NMR parameters of undoped and 3C-doped (8, 0) zigzag BPNTs

In this research, we studied the structure, properties and NMR parameters of interaction F2 gas with pristine and 3C-doped (8, 0) zigzag models of boron phosphide nanotubes (BPNTs). in order to reach these aims, we considered four different configurations for adsorption of F2gas on the outer and inner surfaces of BPNTs. The structures of all models were optimized by using density functional the...

متن کامل

Continuous symmetry analysis of NMR chemical shielding anisotropy.

Molecular symmetry is a key parameter which dictates the NMR chemical shielding anisotropy (CSA). Whereas correlations between specific geometrical features of molecules and the CSA are known, the quantitative correlation with symmetry--a global structural feature--has been unknown. Here we demonstrate a CSA/symmetry quantitative relation for the first time: We study how continuous deviation fr...

متن کامل

A DFT study of NMR parameters for MgO nanotubes

Magnesium oxide nanotubes of finite length are investigated by the Density Functional Theory (DFT) at the B3LYP/6-31G (d) level. The (6, 0) zigzag and (4, 4) armchair of MgO nanotubes were considered and nuclear magnetic resonance properties including isotropic and anisotropic chemical shielding parameters (CSI and CSA) were calculated for 25Mg and 17O atoms of the optimiz...

متن کامل

A DFT study of NMR parameters for MgO nanotubes

Magnesium oxide nanotubes of finite length are investigated by the Density Functional Theory (DFT) at the B3LYP/6-31G (d) level. The (6, 0) zigzag and (4, 4) armchair of MgO nanotubes were considered and nuclear magnetic resonance properties including isotropic and anisotropic chemical shielding parameters (CSI and CSA) were calculated for 25Mg and 17O atoms of the optimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 6  شماره 

صفحات  -

تاریخ انتشار 2007